What the heck...?
Can Lp(a) create more damage than we previously thought?
Dr. Hecht has apparently showed it with his examination of lipoprotein, cardiac and metabolic parameter comparisons with the real measure of heart disease risk: EBCT-determined plaque burden. Lp(a) was 3rd after HDL and LDL particle diameter in being highly associated with coronary calcifications. See below. Free PDF
HERE. Normally at TrackYourPlaque we consider Lp(a) greater than 20 mg/dl as a high contributor toward accelerated plaque burden. When I look at Dr. Hecht's graphs, what I notice is that indeed this may
not be true.
It appears to my observations that at ANY Lp(a) value, plaque burden is quite high reaching even 97th, 98th or 99th calcium percentile for CAD risk (of population norms) at severely low Lp(a) levels of 5 mg/dl or 10 mg/dl.
OK...what the heck?
I can make the same observations for my CAD (heart), PVD (peripheral), or CVD (stroke) patients and individuals with extensive diabetic complications. At any Lp(a), the extent of disease can still be quite pronounced.
What other factors are correlated to vascular damage?
1. Low HDL2b
2. High small dense LDL.
These THREE factors determine almost entirely the extent of disease. Both visionaries Dr. Davis and Dr. Hecht focus on these predominantly to control and halt the progression of calcifications.
How are these 3 metabolic parameters created in the first place?
--low fat SAD AHA low cholesterol low saturated fat diet
--saturated fat deficiency
--excessive carbs (
>10 g/d,
>20 g/d,
>50 g/d,
>100 g/d -- depending on a person's insulin and insulin sensitivity and pancreas/adipose/hormone status)
--inflammation (excessive omega-6 oils)
Not... necessarily... a Slo-niacin or Niaspan deficiency...
Saturated Fats Like Butter Beat the Cr*pola Out of Canola in Lowering Lp(a)
We've discussed Dr. Mozaffarian earlier in
Part IV Benefits of High-Saturated Fat Diets where he showed higher sat fat (
> 12.0%), lower n-6 PUFA and lower carb were associated with less coronary artery stenosis; in fact in the quartile of the
highest sat fat dietary intake,
regression of coronary artery stenosis was signficantly observed.
No other parameter was correlated to regression. Right...! ONLY higher dietary saturated fat consumption... (this quartile also was found to
smoke more and took
less pharmaceuticals).
Is Krauss in the house?? OK, Dr. Mozaffarian at Harvard has come through again (sort of). He did the right study again (though... 'wrong' conclusions). In his most recent publication Mozaffarian showed that after switching human subjects off of various concentrations of dietary trans fats to different fats (saturated and n-6), dramatic changes in cardiac parameters were noticed (Mozaffarian D, Clarke R. Eur J Clin Nutr. 2009 May;63 Suppl 2:S22-33. Free PDF
HERE. ) Butter and other saturated fats were shown to lower the baseline Lp(a) to greater degrees than n-6 PUFAs like soybean, cottonseed, or canola oil.
Butter, palm oil and lard beat canola and other n-6 PUFA oils by
3-4-fold.
Mechanism of Action of: B U T T E R
Butter is comprised of part monounsaturated fats and part saturated fatty acids with one of the predominant acids being BUTYRIC ACID, a 4-carbon chain entity. It turns out that ALL the saturated fatty acids behave much like the omega-3 PUFAs that we enjoy for their plaque-regression, lipoprotein improving, immunomodulating and anti-inflammatory properties. Omega-3 PUFAS bind the whole-pan-PPAR receptor family to shift to LDL larger particles and increase HDL2b. Saturated fats bind most strongly to PPAR-gamma which raises HDLs and and lowers both Lp(a) and Small Dense LDL (particularly LDL-IVb, the 'death band'). They bind
weakly to PPAR-delta but sufficiently to paradoxically and P-O-T-E-N-T-L-Y
lower inflammation (NFkB, TNF-alpha).
Recall:
PPAR-Delta is the Dagger in the Heart of CAD
Saturated fatty acids in fact behave like
hormones and bind like steroid nuclear
hormones to the PPAR family of receptors (like vitamin-D-to-VDR, carotenoids-to-RXR, vitamin-A-to-RAR, thyroid-to-TR, estrogen-to-ER, etc). This research was done many years ago by Glaxo researchers Eric Xu and others (
Molecular Cell, Vol. 3, 397–403, March, 1999). See below. Other researchers defined further the benefits of butyric acid (butyrate) by elucidating its binding activity of PPAR convincingly.
Our b*tt is made out of saturated fats and we eat saturated fats (almonds, coconuts, olives, fatty fish, grassfed beef, free-range eggs/fowl, wild duck, etc). Our body creates, metabolizes and burns saturated fats all day (recall:
palmitic acid) esp when we are between meals, intermittent fasting, carb restricting, ketotic, exercising or starving.
Do we make butyrate??
Make Butter (Butyrate) In Your B*TT
Just kidding... North of the rectum (e.g. b*tt), in the colon , short-chain fatty acids like butyric acid (butyrate) one of the fatty acids found in butter, cream and cheeses is produced via anaerobic fermentation of dietary fiber. Our friendly happy gut flora actually produces butyrate (not us). We either consume it or we absorb it from our intestines from bacterial production.
Yes... *haaa* make BUTTER in your colon from vegetable fibers...
Butyrate Protects Against Colon Cancer by Lowering NFkB by Binding PPAR
Furthermore, butyrate has been shown in trials to be anti-inflammatory and immune-modulating. Deficiencies in luminal butyrate synthesis are associated with chronic bowel inflammation. Schwab M et al state:
"Previously, we have demonstrated that the nuclear hormone erceptors Peroxisome-Proliferator-Activated-Receptor (PPAR) and the vitamin D receptor (VDR), transcription factors with anti-inflammatory capacities, are up-regulated and activated by butyrate (Gaschott and Stein, 2003; Gaschott et al., 2001; Schwab et al., 2006;Wachtershauser et al., 2000). PPAR and VDR are highly expressed in the colonic epithelium indicating that both receptors are important agents in the physiology of the human colon (Desvergne and Wahli, 1999; Nagpal et al., 2005). Ligands for both receptors have been shown to interfere with the activity of NFkB and to influence the ability of olonocytes to express immune-modulatory cytokines (Segain et al., 2000; Sun et al., 2006)."
Independently in two labs in 2007, butyrate was found to control NFkB, one of the most potent pro-inflammatory cytokines of our immune system implicated in ALL chronic and acute diseases known to man, including colon cancer and coronary artery disease (Schwab M et al. Molecular Immunology 2007;44: 3625–3632.; Usame M et al. Nutr Res 2008;28:321–328. See end.) The anti-inflammatory power of lauric acid from coconut and palm oil and butyric acid from butter originates from their ability to bind and activiate PPAR-gamma as shown by these studies. PPAR, like the vitamin D receptor (VDR), is one of the master controllers of inflammation. Schwab shows in several publications that butyrate does in fact configure, bind, and activate PPAR receptors.
Butyrate is like a DRUG. It binds the most potent receptor for energy balance, immunomodulation, control of lipids (Lp(a), HDL2b, sdLDL), and inflammation! End result... it knocks out NFkB. For the heart, this translates to kicking the cr*pola out of canola in terms of shifting to Pattern 'A', increasing HDL-2b, annihilating small dense LDL and Lp(a) and
eradication of vascular atherosclersis.
See Prior Posts:
PPAR
Trying to Target Butter-Receptors: How About Grassfed GHEE??
"There is increasing evidence that the expression and activity of PPARg and VDR are under the control of butyrate implying that the receptors may participate in butyrate-mediated suppression of NFB activation (Gaschott and Stein, 2003; Gaschott et al., 2001; Schwab et al., 2006; Wachtershauser et al., 2000). PPARg and VDR are both ligand-activated transcription factors that belong to the nuclear hormone receptor family and participate in a variety of immune processes (Tirona and Kim, 2005). VDR is widely expressed in epithelial tissues, cells of the immune system and several cancer cell lines including colorectal cancer cells (Giuliano et al., 1991; Segaert and Bouillon, 1998). PPARg is activated by natural ligands such as fatty acids and eicosanoids and is highly expressed in colonic epithelium, indicating an important role of the receptor in the physiology of the human colon (Desvergne and Wahli, 1999). All these characteristics make both receptors potential targets in butyrate-mediated inhibition of NFkB signalling."
In Vivo (Live Humans) High Intake of Butter Associated with Reduced Colon Cancer
Of course Swedish researchers examined their nutrition data registry for the Swedish Mammagraphy Cohort and lo and behold found distinct correlations between high dairy intake and low colon cancer (
Am J Clin Nutr. 2005 Oct;82(4):894-900.) Those in the upper 2 quartiles of CLA consumption and
> 4 servings daily of high-fat dairy was highly associated with reduced colon cancer risk. The author's conclusions were: These prospective data suggest that high intakes of high-fat dairy foods and CLA may reduce the risk of colorectal cancer.
Diary Fat Potential Anti-Carcinogenic Agents
Parodi reviews the literature and reports that... "About one third of all milk triacylglycerols contain one molecule of
butyric acid, a potent inhibitor of proliferation and inducer of differentiation and apoptosis in a wide range of neoplastic cell lines. Although butyrate produced by colonic fermentation is considered important for colon cancer protection, an animal study suggests dietary butyrate may inhibit mammary tumorigenesis. The dairy cow also has the ability to extract other potential anticarcinogenic agents such as beta-carotene, beta-ionone and gossypol from its feed and transfer them to milk (J Nutr. 1997 Jun;127(6):1055-60. Free PDF
HERE). Grassfed cheese, cultured milk, yogurt, ghee, and butter also contain CLA. Parodi discusses that, "Recent research shows that milk fat contains a number of potential anticarcinogenic components including
conjugated linoleic acid, sphingomyelin,
butyric acid and ether lipids.
Conjugated linoleic acid inhibited proliferation of human malignant melanoma, colorectal, breast and lung cancer cell lines. In animals, it reduced the incidence of chemically induced mouse epidermal tumors, mouse forestomach neoplasia and aberrant crypt foci in the rat colon. In a number of studies,
conjugated linoleic acid, at near-physiological concentrations, inhibited mammary tumorigenesis independently of the amount and type of fat in the diet."
Beef Tallow SYNERGISTICALLY Beats the Cr*pola Out of Corn Oil (n-6 PUFA)
In another interesting animal study (mice),
beef tallow (25% palmitic acid; 50% oleic acid)
increased the potency of
CLA in
decreasing mouse mammary tumor metastasis. (
J Nutr. 2006 Jan;136(1):88-93.) "Linoleic, oleic, stearic, and palmitic acids, either did not change or enhanced the cytolytic effects of
CLA isomers on mouse mammary tumor cells in culture." The authors found that oleic + palmitic
enhanced cytolytic CLA-derived tumor cell death, whereas n-6 PUFAs (linoleic acid) were associated with dose-dependent increases in tumorigenesis and blocking CLA-benefits.
See Prior Post:
Happy Cows and CLA (CLA is found in grassfed beef, dairy, lamb, pastured pork)
Rat Study: ONLY Olive Oil and n-6 PUFAs Associated with Cancer Model in High-Fat Diets
Rats are not humans but they have no gall bladders... so they are not unlike 80% of the individuals that I see who fail to have functioning gallbladders. Anyhow in this one study 4 high fat diets (corn, lard, beef tallow and coconut oil) and 1 low fat corn oil were used in 5 rat groups (
Chan PC et al. Cancer Res. 1983 Mar;43(3):1079-83.). Mammary tumors were induced with N-nitrosomethylurea. Incidence of tumors in the high-fat groups was the lowest in the coconut oil group. Upon further analyses (these researchers were GOOD), they concluded, " the total
oleic and
linoleic acid intake in the five groups of rats correlated positively (r = 0.95) with mammary tumor incidence."
Role of Oliv-ola (Canola+Olive oil) Induced Colon Carcinogenesis:
Coconut Oil Beats the Cr*pola Out of OLIVOLA
Nair J et al in Germany have been conducting research in DNA damage associated with oils (
Nair J et al. Mutat Res. 2007 Nov 1;624(1-2):71-9.) They tested LA (linoleic acid, n-6 PUFA), oleic acid and coconut oil in rats by lavaging them for 30day, sacrificing, then measuring etheno-DNA adducts in the organs. Etheno-DNA adducts are associated with j*cked up gene expression, mutations and carcinogenesis. They are produced by oxidative stress and lipid peroxidation. Their research showed that n-6 PUFAs have gender-specific toxicity and other surprising results. Not unlike the Israeli 'Paradox' (see
below), female LA-treated rats showed
increases in etheno-DNA adducts in the DNA of their circulating immune cells, the all important WBC (white blood cells). For both genders, colon was the target for stress-derived DNA-adducts in omega-6-PUFA treated rats, which supports the role for
omega-6 induced colon cancer, the authors concluded.
'Unexpectedly,
olive oil treatment enhanced entheno-adduct levels in
prostate 3-9-fold' the researchers observed.
What... the... H E C K ?
So...
olive oil (n-9 monounsaturated) is highly implicated in TWO studies with cancer: mammary and prostate. Is this only seen in certain situations?
Lame-o retard-o dietary fat
composition?
Saturated fatty acid deficiencies?
Omega-3 deficiencies?
Most lab rats are vitamin D deficient as well...
Here is other provocative (ok, not really) research showing the
same thing in more in vivo animal cancer model studies:
--coconut oil beats the cr*pola out of n-6 PUFAs
--MCT oil (50% of coconut oil) beats the cr*pola out of n-6 PUFAs
--the
lower the rat cholesterol, the
higher the incidence of mammary tumorogenesis... in other words (switch around), the larger the LDL particles induced by saturated fatty acids which results in a higher total cholesterol, the
lower the risk of breast cancer in rats. Applies to humans too.
Dietary fat and mammary cancer. II. Modulation of serum and tumor lipid composition and tumor prostaglandins by different dietary fats: association with tumor incidence patterns.
Cohen LA, Thompson DO, Choi K, Karmali RA, Rose DP.
J Natl Cancer Inst. 1986 Jul;77(1):43-51.
Dietary fat and mammary cancer. I. Promoting effects of different dietary fats on N-nitrosomethylurea-induced rat mammary tumorigenesis.
Cohen LA, Thompson DO, Maeura Y, Choi K, Blank ME, Rose DP.
J Natl Cancer Inst. 1986 Jul;77(1):33-42.
Influence of dietary medium-chain triglycerides on the development of N-methylnitrosourea-induced rat mammary tumors.
Cohen LA, Thompson DO, Maeura Y, Weisburger JH.
Cancer Res. 1984 Nov;44(11):5023-8.
Medium chain triglycerides (MCT) in aging and arteriosclerosis.
Kaunitz H.
J Environ Pathol Toxicol Oncol. 1986 Mar-Apr;6(3-4):115-21.
So I've digressed... let's get back to the
heart of the matter...
n-6 PUFAs Shrink LDL-Particles... To Pattern B (BAD)
Shrinkage... Not. Good. The rest of the Mozaffarian and Clarke's conclusions are not so justified by the medical literature. They further try to discuss the cardiac benefits of the n-6 vegetable oils without acknowledging the metabolic parameters that Drs. Hecht, Krauss, Superko and Davis support as the factors that are
most highly correlated to plaque burden: LDL particle size, HDL2b and Lp(a). Unfortunately I find their so-called cardiac assertions kinda b-u-n-k-y. They employ parameters (TC/HDL ratio, apoB/AI ratio, CRP) that are not borne out to be associated with coronary calcium plaque burden or serial plaque progression according to Hecht's 2003 publication.
n-6 PUFA and olive oil are necessarily heart healthy?? No. In a study with rapeseed, olive oil or sunflower oil, LDL particles significantly (p=0.012) shifted to smaller, dense particles with
all the oils tested, after a switch from a two-week saturated fat diet. BUNKY!!! See below.
Dietary mono- and polyunsaturated fatty acids similarly affect LDL size in healthy men and women.
Kratz M, et al. J Nutr. 2002 Apr;132(4):715-8.
The goal of this study was to investigate the effect of the dietary fat composition on LDL peak particle diameter. Therefore, we measured LDL size by gradient gel electrophoresis in 56 (30 men, 26 women) healthy participants in a controlled dietary study. First, all participants received a baseline diet rich in saturated fat for 2 wk; they were then randomly assigned to one of three dietary treatments, which contained refined olive oil [rich in monounsaturated fatty acids (MUFA), n = 18], rapeseed oil [rich in MUFA and (n-3)-polyunsaturated fatty acids (PUFA), n = 18], or sunflower oil [rich in (n-6)-PUFA, n = 20] as the principal source of fat for 4 wk. Repeated-measures ANOVA revealed a small, but significant reduction in LDL size during the oil diet phase (-0.36 nm, P = 0.012), which did not differ significantly among the three groups (P = 0.384). Furthermore, affiliation with one of the three diet groups did not contribute significantly to the observed variation in LDL size (P = 0.690). In conclusion, our data indicate that dietary unsaturated fat similarly R E D U C E S LDL size relative to saturated fat. However, the small magnitude of this reduction also suggests that the composition of dietary fat is not a major factor affecting LDL size.
PMID: 11925466
n-6 PUFAs Cause Inflammation and Cancer: Israeli Experience
Shapiri discusses how changing from traditional oils (saturated fats like
schmaltz (rendered goose or chicken fat w/onions) or beef tallow) to a
high consumption of n-6 PUFA oil is postulated to have lead to the astronomic rise in cancer in Israeli Jewish women (
Eur J Cancer Prev. 2007 Oct;16(5):486-94.)
It is discussed
HERE as well.
Wanna CUPPA of CANCER?
Increase your n-6 PUFAs,
reduce your saturated fatty acids.
Small Dense LDL, OxLDL and Lp(a) SYNERGISTICALLY Grow Plaque
Why is Lp(a) so extremely toxic and an accelerant for all damage whether it is diabetic complications (microvascular: eyes - kidney - nerves - penile - brain (e.g. Type 3.0 Diabetes)) or atherosclerotic disease (macrovascular: heart, carotid, peripheral)? Apparently Lp(a) binds oxidized phospholipids of apoB 100 which is attached to
all LDL, including Lp(a). What is Lp(a)? It is just LDL + apo(a) combined. Large LDL are rarely oxidized -- they are protected by size, buoyancy, high cholesterol content (yes, cholesterol is an 'antioxidant') and a high content of vitamins and fat-soluble antioxidants (ubiquinols, carotenoids, menaquinones (vitamin K2s), tocopherols, tocotrienols) and apo E (carriers of minerals and other vital micronutrients).
A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma.
Bergmark C, et al. J Lipid Res. 2008 Oct;49(10):2230-9. Free PDF HERE.
Oxidized phospholipids (OxPLs) on apolipoprotein B-100 (apoB-100) particles are strongly associated with lipoprotein [a] (Lp[a]). In this study, we evaluated whether Lp[a] is preferentially the carrier of OxPL in human plasma. The content of OxPL on apoB-100 particles was measured with monoclonal antibody E06, which recognizes the phosphocholine (PC) headgroup of oxidized but not native phospholipids. To assess whether OxPLs were preferentially bound by Lp[a] as opposed to other lipoproteins, immunoprecipitation and ultracentrifugation experiments, in vitro transfer studies, and chemiluminescent ELISAs were performed. Immunoprecipitation of Lp[a] from human plasma with an apolipoprotein [a] (apo[a])-specific antibody demonstrated that more than 85% of E06 reactivity (i.e., OxPL) coimmunoprecipitated with Lp[a]. Ultracentrifugation experiments showed that nearly all OxPLs were found in fractions containing apo[a], as opposed to other apolipoproteins. In vitro transfer studies showed that oxidized LDL preferentially donates OxPLs to Lp[a], as opposed to LDL, in a time- and temperature-dependent manner, even in aqueous buffer. Approximately 50% of E06 immunoreactivity could be extracted from isolated Lp[a] following exposure of plasma to various lipid solvents. These data demonstrate that Lp[a] is the preferential carrier of PC-containing OxPL in human plasma. This unique property of Lp[a] suggests novel insights into its physiological function and mechanisms of atherogenicity.
Butyrate NFkB References
Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NF kappa B signalling.
Schwab M, Reynders V, Loitsch S, Steinhilber D, Stein J, Schröder O.
Mol Immunol. 2007 Jul;44(15):3625-32. Epub 2007 May 22.
Role of nuclear hormone receptors in butyrate-mediated up-regulation of the antimicrobial peptide cathelicidin in epithelial colorectal cells.
Schwab M, Reynders V, Shastri Y, Loitsch S, Stein J, Schröder O.
Mol Immunol. 2007 Mar;44(8):2107-14. Epub 2006 Oct 19.
PPARgamma is a key target of butyrate-induced caspase-3 activation in the colorectal cancer cell line Caco-2.
Schwab M, Reynders V, Ulrich S, Zahn N, Stein J, Schröder O.
Apoptosis. 2006 Oct;11(10):1801-11.